Vaccine induction of trained immunity: mechanisms and new insights

Mihai G. Netea

Introducing BCG in Norrbotten, Sweden, 1927-31

"One could evidently be tempted to find an explanation for this much lower mortality among vaccinated children in the idea that BCG provokes *a non-specific immunity...*" Carl Naeslund 1932

WHO-SAGE report: BCG protects against all-cause mortality

Birth cohort	Deaths/	Subsequent	Subsequent	Age at	Observation	Effect	Adjustment	Relative risk	Relative risk	Mortality	Assessment
Clinical trials	children*	DTP†	MV‡	first dose	period§	measur	e	(95% Cl)	(95% CI)	reduction¶	of risk of bias
Canada 1933-45 ^{a4}	(53+63)/609	None	None	10 days	Age 60 months	RR	None	-	0.94 (0.67 to 1.32)	6% (-32% to 33%)	Moderate risk
Guinea-Bissau 2002-08 (early)*	* ^{a14} (2+6)/105	None	None	2 days	Age 1 month	HR	Age		0.28 (0.06 to 1.37)	72% (-37% to 94%)	Low risk
Guinea-Bissau 2002-08 (main) ^{a'}	¹⁶ (27+48)/2343	None	None	2 days	Age 1 month	MRR	Age		0.55 (0.34 to 0.89)	45% (11% to 66%)	Low risk
USA c.1935 ^{a26}	(12+13)/3008	None	None	0-4 years	Age 48 months	MRR	None		0.91 (0.41 to 1.99)	9% (-99% to 59%)	Moderate risk
USA c.1941 ^{a27}	(4+9)/451	None	None	7-10 days	Age 60 months	RR	None		0.42 (0.13 to 1.35)	58% (-35% to 87%)	Moderate risk
FE subtotal: $P=0.20$, $I^2=33\%$								•	0.76 (0.59 to 0.97)		
RE subtotal									0.70 (0.49 to 1.01)		
with estimated predictive interva	al								(0.27 to 1.81)		
Observational studies											
Case-control											
Benin 1983-87 ^{a2}	(34+39)/294	Many	Many	NR	Age 4-36 month	s OR	Age, sex, others		0.68 (0.38 to 1.23)	32% (-23% to 62%)	High risk
Cohort											
Guinea-Bissau 1984-87 ^{a6}	NR/1657	Many	Some	NR (0-8 months)	Age 8 months	HR A	Age, sex, DTP, others		0.63 (0.30 to 1.33)	37% (-33% to 70%)	High risk
Guinea-Bissau 1989-2001 ^{a7}	(2+14)/695	Many	Few	1-7 days	Age 6 months	HR	Age, sex, others		0.05 (0.01 to 0.46)	95% (54% to 99%)	High risk
Guinea-Bissau 1990-96 ^{a10}	(92+97)/4418	Many	Some	Median 1 month	6 months follow-u	up HR	Age, DTP, others		0.56 (0.37 to 0.84)	44% (16% to 63%)	High risk
India 1987-89 ^{a19}	(3+29)/3072	None	Some	Median 1.6 months	Age 12 months	MRR	None		0.60 (0.18 to 1.97)	40% (-97% to 82%)	High risk
India 1998-2002 ^{a20}	208/10 274	Many [c]	Few	Median 19 days	Age 6 months	HR	Age		0.44 (0.29 to 0.66)	56% (34% to 71%)	High risk
Malawi 1995-97 ^{a22}	NR/751	Many [c]	Few	Median 16 days	Age 8 months	HR	Age, others		0.45 (0.16 to 1.23)	55% (-23% to 84%)	High risk
Papua New Guinea 1989-94 ^{a23}	NR/3937	Many	Few	Median 1 month	Age 1-6 months	HR	Age, DTP, others		0.17 (0.09 to 0.34)	83% (66% to 91%)	High risk
Senegal 1996-99 ^{a24}	(9+372)/4421	Many [c]	Many [c] N	R (by 12 months in 44°	%) Age 24 months	HR	Age, others		0.98 (0.50 to 1.90)	2% (-90% to 50%)	High risk
FE subtotal: P=0.005, I ² =63%								•	0.49 (0.40 to 0.61)		
RE subtotal									0.47 (0.32 to 0.69)		
with estimated predictive interv	al								(0.15 to 1.46)		
Excluded (very high risk of bias)											
Bangladesh 1986-2001 ^{a1}	184/37894	Many (OS)	Many	0-2 months	Age 0-60 month	s HR	Age	(0.20 (0.07 to 0.54)		Very high risk
Burkina Faso 1985-93 ^{a3}	(28+280)/9085	Many (SS)	Many [cens]	Mean 4.8 months	6 months follow-u	up HR	Age, others		0.50 (0.34 to 0.75)		Very high risk
Ghana 1998-2004 ^{a5}	NR/17 967	Many	Many N	R (by 12 months in 57°	%) Age 60 months	HR	Age, others	+	0.18 (0.17 to 0.20)		Very high risk
India 2006-11 ^{a21}	(45+285)/11 39	0 Few	None	Mean 17 days	Age 1.2 months	MRR	None		0.12 (0.09 to 0.16)		Very high risk
								020512	5		
								lower High			
								mortality mortali	ty		

with

vaccine

with

vaccine

Higgins et al, BMJ, 2016

BCG vaccination in vivo & yellow fever vaccine D Yellow fever Antibody Titer Day 90

Arts et al, Cell Host Microbe, 2018

Innate versus specific immunity

Innate immunity:

- rapid
- effective
- not-specific, indiscriminate
- lacks immunological memory

Adaptive immunity:

- needs 10–14 days
- specific activation against a particular microorganism, enhancing the effect of the response
- builds immunological memory

BCG enhances monocyte-derived cytokines

Radboudumc

Kleinnijenhuis et al, PNAS, 2012

Long-term epigenetic reprogramming in myeloid cells

Long-term epigenetic reprogramming in myeloid cells

Trained immunity: mechanisms

Netea et al, Nature Rev Immunol 2020

Trained immunity: from bone marrow to local defenses

Radboud umc

Netea et al, Nature Rev Immunol 2020

COVID-19: infection and pathophysiology

Radboudumc

Netea et al, Cell 2020

ACTIVATE study: BCG in elderly

Giamarellos et al, Cell 2020

BCG-Prime study in the Netherlands (n=3000+3000)

Follow-up (days)

Similar data in studies from South Africa and Denmark

BCG-Elderly study in the Netherlands

BCG-Prime study in the Netherlands (n=3000+3000)

BCG revaccination qualitatively and quantitatively enhances SARS-CoV-2 spike-specific neutralizing antibody and T cell responses induced by the COVISHIELD[™] vaccine in SARS-CoV-2 seronegative young Indian adults

Why not build a future vaccine which combines trained immunity and adaptive memory

How do vaccines work?

Immune activation

Now let's design a modular trained immunity vaccine

2 Trained immunity-inducing ligands

- •
- •
- •
- •
- •

Now let's design a modular trained immunity vaccine

Providing broad protection for the elderly and vulnerable

Trained immunity-inducing vaccines as a tool

Thank you !

Dept. Internal Medicine - Radboud UMC

Jorge Dominguez Simone Moorlag Esther Taks Athanasios Ziogas Elisabeth Dulfer Ozlem Bulut Gizem Klic Busranur Geckin Priya Debisarun Valerie Koeken **Rob** Arts **Bas Blok** Jos W.M. van der Meer **Reinout** van Crevel Niels Riksen Leo Joosten

Dresden University

Ioannis Mitroulis Triantafyllos Chavakis

McGill University Montreal Maziar Divangahi

Dept. Molecular Biology – Radboud Univ.

Boris Novakovic Joost Martens Colin Logie Henk Stunnenberg

Mount Sinai New York / TUe Willem Mulder Zahi Fayad Jordi Ochando

Bonn University – LIMES Katarzyna Placek Joachim Schultze

Athens University Evangelos Giamarellos

University of Melbourne Nicole Messina Nigel Curtis