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Introducing BCG in Norrbotten, Sweden, 1927-31

Coverage 
highest
in families 
with TB

Reduction was 
in infancy, but 
TB deaths 
occur later 

This made 
little sense

”One could evidently be tempted to find an explanation for this much lower mortality 
among vaccinated children in the idea that BCG provokes a non-specific immunity...”

Carl Naeslund 1932
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WHO-SAGE report: BCG protects against all-cause mortality
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BCG vaccination in vivo & yellow fever vaccine
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Innate versus specific immunity

Innate immunity: 
- rapid
- effective 
- not-specific,    

indiscriminate
- lacks immunological 

memory

Adaptive immunity: 
- needs 10-14 days
- specific activation against a 

particular microorganism, 
enhancing the effect of the 
response

- builds immunological memory



BCG enhances monocyte-derived cytokines
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Long-term epigenetic reprogramming in myeloid cells
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Long-term epigenetic reprogramming in myeloid cells

— were upregulated and were identified to 
be dependent on IL-1β and granulocyte–
macrophage colony-stimulating factor 
(GM-CSF). The longevity of these effects 
was found to persist for up to a month, and 
similar observations have been made after 
administering BCG44.

In addition to pharmacologically 
induced trained immunity, a recent study 
found that in experimental myocardial 
infarction, myeloid-biased progenitor cells 
in the bone marrow are distally stimulated 
to produce neutrophils and monocytes 
through GM-CSF45. In ischaemic heart 
disease, Christ and colleagues observed 
innate immune reprogramming in an 
atherosclerosis mouse model, in which mice 
lack the low-density lipoprotein receptor 
(Ldlr−/−). These mice lack LDLR expression 
on liver cells and cannot properly process 
cholesterol. When fed a Western and 

high-fat diet, long-lived transcriptional 
and epigenetic reprogramming of myeloid 
progenitor cells produced inflammatory 
monocytes in this mouse model41. 
These epigenetic modifications, which 
were associated with activation of the 
NLRP3-dependent inflammasome (a 
multiprotein complex responsible for 
inflammatory processes) and associated 
IL-1β secretion, persisted after the mice  
were switched back to a regular  
chow diet.

The trained-immunity-associated 
epigenetic, cellular and systems processes 
depicted in FIG. 2 provide ample possibilities 
for highly specific immunotherapeutic 
interventions. Blockade of IL-1β7 and 
GM-CSF46 are clinically available treatment 
modalities that most likely also target 
trained immunity. In turn, small-molecule 
inhibitors of epigenetic pathways  

may directly intervene in immune  
cell function47.

Pathways in trained immunity
Trained immunity cell types
Thus far, the research focus on trained 
immunity has been mainly on monocytes, 
macrophages and NK cells, but other innate 
immune cell types, such as ILCs, can also 
display trained immunity characteristics. 
Some of the first evidence that macrophages 
have adaptive features was derived from 
studies that show lipopolysaccharide 
(LPS)-induced gene-specific chromatin 
modifications48. Moreover, exposure 
of monocytes and/or macrophages to 
C. albicans or β-glucan enhanced their 
subsequent response to stimulation with 
unrelated pathogens or pathogen-associated 
molecular patterns (PAMPs)38, which was 
accompanied by significant reprogramming 

Nature reviews | Drug Discovery
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Trained immunity: mechanisms

Netea et al, Nature Rev Immunol 2020

MicroRNAs might also have a role in the induc-
tion and regulation of these mechanisms. miR-155 was 
shown to be critical for adaptive NK cell responses to 
MCMV infection through the regulation of targets, 
including NOXA and SOCS1 (REFS119,120). The upregu-
lation of miR-155 during inflammatory processes has 
also been correlated with the hyperactivation of cells 
from the myeloid compartment. This is likely owing to 
a decreased activity of phosphatases that act as negative 
regulators of a series of intracellular pathways121, includ-
ing the phosphatase SHIP1, which was recently demon-
strated to act as a negative regulator in the induction of 
trained immunity122.

New studies also suggest that changes in DNA meth-
ylation patterns discriminate between ‘responders’ 

(people who are able to undergo trained immunity) and 
‘non- responders’ to stimuli that induce trained immunity, 
such as BCG. In this regard, individuals who exhibit an 
enhanced containment of M. tuberculosis replication after 
BCG vaccination displayed a wide loss of DNA methyl-
ation among promoters of genes belonging to immune 
pathways compared with individuals characterized as 
non- responders123. A follow- up study identified 43 genes 
with differential methylation patterns in BCG- naive 
responders compared with non- responders that could 
potentially be used as predictors of responsiveness to 
stimuli that induce trained immunity124.

As mentioned earlier, non- haematopoietic cells, such 
as epidermal stem cells, also show features of trained 
immunity. The epigenetic memory of epidermal stem 
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Fig. 3 | Interplay between epigenetics and metabolism. The correct 
initiation of the mechanisms necessary for the induction of trained 
immunity relies on the active interplay between epigenetic and metabolic 
reprogramming of the innate immune cells on stimulation. During primary 
challenge, the recognition of specific ligands by pattern recognition 
receptors triggers a series of intracellular cascades that lead to the 
upregulation of different metabolic pathways, such as glycolysis, 
tricarboxylic acid (TCA) cycle and fatty acid metabolism. Certain 
metabolites derived from these processes, such as fumarate and acetyl 
coenzyme A (acetyl- CoA), can activate or inhibit a series of enzymes 
involved in remodelling the epigenetic landscape of cells, such as the 
histone demethylase lysine- specific demethylase 5 (KDM5) or histone 
acetyltransferases, leading to specific changes in histone methylation and 

acetylation of genes involved in the innate immune responses. 
β- Glucan- mediated activation of dectin 1 signalling also triggers calcium 
influx, which leads to the dephosphorylation of nuclear factor of activated 
6|EGNNU�
0(#6���CNNQYKPI�KVU�VTCPUNQECVKQP�KPVQ�VJG�PWENGWU��YJGTG�KV�OC[�DKPF�
to DNA and activate gene transcription. This facilitates the accessibility of 
the DNA to the transcriptional machinery and gene regulatory elements 
and specific long non- coding RNAs, promoting and facilitating an enhanced 
gene transcription on secondary stimulation of the cells. IGF1R , insulin- like 
growth factor 1 receptor ; MLL1, mixed- lineage leukaemia protein 1 (also 
known as histone- lysine N- methyltransferase 2A); mTOR , mechanistic 
target of rapamycin; Pol, polymerase; UMLILO, upstream master long 
non- coding RNA of the inflammatory chemokine locus; WDR5, WD 
repeat- containing protein 5.
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Trained immunity: from bone marrow to local defenses

Netea et al, Nature Rev Immunol 2020

are equipped with receptors to sense whether the epi-
thelial barrier is breached and, in turn, actively recruit 
immune cells to prevent spread of bacteria and to repair 
the damage7. Although it is still unfolding, the mole-
cular communication avenue between stem cells and 
immune cells appears to be bidirectional. Stem cells 
do not merely take instructions but rather they also 
actively instruct the immune system. In the skin, for 
example, stem cells can sense when their niche bar-
rier is breached and produce signals to recruit specific 
immune cell sentinels, even under conditions where 
the immune system itself has been suppressed7. In turn, 
recruited immune cells can signal to stem cells to prolif-
erate and patch the barrier. In this way, the coordination 
is honed to achieve maximal tissue repair. Another cell 
type that can acquire a trained immunity- like phenotype 
is the fibroblast. It was demonstrated that IFNβ treat-
ment of mouse embryonic fibroblasts led to faster and 
higher induction of interferon- stimulated genes that 

correlated with enhanced recruitment of polymerase II 
to interferon- stimulated gene loci on restimulation99.

Central versus peripheral trained immunity
Trained immunity was initially shown to act through 
mature myeloid cells. Until recently this hypothesis 
resulted in a conundrum as mature myeloid cells, such 
as monocytes and DCs, in both mice and humans are 
short- lived, with an average half- life of 5–7 days100–102. 
Therefore, how trained immunity can be maintained in 
myeloid cells for several months, years and even decades41 
remained unknown. More recent work has helped to 
resolve this issue by showing that trained immunity can 
occur in bone marrow progenitor cells (central trained 
immunity), as well as in blood monocytes and tissue 
macrophages (peripheral trained immunity) (FIG. 2).

Recent studies have shown that β- glucan or BCG can 
reprogramme myeloid progenitors in the bone marrow 
to generate trained immunity within the myeloid cell 
compartment103. In a mouse model of tuberculosis, 
Kaufmann and colleagues32 demonstrated that BCG 
vaccination reprogrammes haematopoietic stem cells 
(HSCs) in the bone marrow towards myelopoiesis in 
an IFNγ- dependent manner, which leads to protective 
trained immunity. Similarly, β- glucan increases myelo-
poiesis by promoting the expansion of myeloid- biased 
CD41+ HSCs and cells from the myeloid- biased multi-
potent progenitor 3 (MPP3) subset104. IL-1β and 
granulocyte–macrophage colony- stimulating factor 
(GM- CSF) signalling as well as alterations in glycolysis 
and cholesterol biosynthesis in bone marrow progeni-
tors are putative mechanisms that have been proposed to 
explain β- glucan- induced trained immunity in mice104.

The discovery that HSCs, similarly to epithelial 
stem cells, display a memory function could explain 
the long- standing mystery as to why short- lived 
immune cells such as monocytes can acquire memory. 
Indeed, respiratory epithelial progenitors become more 
stem- like during human allergic inflammatory disease, 
and the associated accessible chromatin changes differ 
in their ability to return to normal when the stimulus is 
withdrawn105.

Several studies have furthermore investigated 
whether trained immunity exists at the level of individ-
ual tissues and if so, how these changes are maintained 
or erased to ensure proper tissue function. Conceivably, 
tissues exposed to the outside world, such as the skin, the 
lungs and the intestine, are prone to encounter immune 
training- inducing stimuli. This concept was explored in 
the lung using two models of viral challenge: namely, 
latent gammaherpesvirus infection and adenovirus 
infection106,107. The severity of house dust mite-induced 
asthma was decreased in the lungs of mice that had pre-
viously been chronically infected with gammaherpes-
virus106. This phenotype was dependent on the long-term 
generation and maintenance of monocyte-derived regu-
latory alveolar macrophages that conferred protection 
against the development of an allergic response in the 
lung. Conversely, adenovirus infection induced remod-
elling in alveolar macrophages, which are long- lived 
tissue- resident cells, such that they retained the infor-
mation of an inflammatory history and subsequently 
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Fig. 2 | Central and peripheral trained immunity. Although trained immunity was  
first established in cells of the mononuclear phagocyte lineage (that is, monocytes and 
macrophages), monocytes have a relatively short lifespan and are unlikely to transmit 
their memory phenotype to their progeny and provide sustainable protection. Thus, 
current vaccine strategies that directly target monocytes or macrophages may have 
limited capacity for generating sustained innate immune memory. By contrast, 
haematopoietic stem cells (HSCs) are long- lived cells with self- renewal properties that 
reside in the bone marrow. The bone marrow is the site of haematopoiesis where HSCs 
continually undergo asymmetric division giving rise to the full repertoire of myeloid  
and lymphoid cell types. HSCs can directly respond to acute and chronic infections. 
Although the exact mechanisms of precursor proliferation or differentiation are not  
well understood, persistent activation of HSCs can result in their exhaustion, leading to 
devastating effects on the systemic immune compartment. Monocytes derived from 
trained HSCs migrate to peripheral organs, where they give rise to monocyte- derived 
macrophages with enhanced effector functions against different types of pathogens. 
Natural killer (NK) cells possess adaptive immune characteristics following infection.  
On reinfection, these memory NK cells undergo a secondary expansion and can more 
rapidly degranulate and release cytokines, resulting in a more protective immune 
response. Epithelial stem cells show memory functions during human allergic 
inflammatory disease, displaying changes in the chromatin accessibility when the 
stimulus is withdrawn. BCG, bacillus Calmette–Guérin; CMP, common myeloid 
progenitor: GMP, granulocyte–macrophage progenitor ; MPP, multipotent progenitor.
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COVID-19: infection and pathophysiology

Netea et al, Cell 2020



ACTIVATE study: BCG in elderly

Giamarellos et al, Cell 2020



BCG-Prime study in the Netherlands (n=3000+3000)

Similar data in studies from South Africa and Denmark



BCG-Elderly study in the Netherlands

Moorlag et al, Clin Infect Dis 2022
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HR=0.86

HR=0.46

BCG-Prime study in the Netherlands (n=3000+3000)
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Why not build a future vaccine which combines trained immunity and adaptive memory



How do vaccines work?

Mulder et al. Nat Rev Drug Discov. 2019.
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Now let’s design a modular trained immunity vaccine
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Now let’s design a modular trained immunity vaccine
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Trained immunity-inducing vaccines as a tool

Chumakov et al, PNAS 2021
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